

StatiX: Making XML Count

Juliana Freire* Prasan Roy Jerome Simeon Bell Labs - Lucent Technologies

Jayant Haritsa Maya Ramanath Indian Institute of Science

Statistics to estimate cardinality of queries

- Query optimization
- Exploratory queries
- Cost-based storage design for XML data
- Relational
 - Fixed and flat structure
 - Need information about distribution of values
- XML
 - Flexible and nested structure
 - Need information about both values and structure

type Show =
 show [title [String], year [Integer], review[String]*, Aka *,
 (box_office [Integer] |
 (season [Integer], Episode *))]
type Aka = aka [String]
type Episode = episode [Aka{0,2}, guest_dir [String]?]

IMDB Sample Data

	<show></show>		
<show></show>	<pre><title> Seinfeld </title></pre>		
<title> Fugitive, The </title>	<year> 1990 </year>		
<year> 1993 </year>	<review></review>		
<review></review>	The best comedy series ever!		
best action movie of the decade			
	<pre><seasons> 9 </seasons></pre>		
<review></review>	<episode></episode>		
Ford and Jones at their best	<aka> The Soup Nazi </aka>		
	<aka> The Soup </aka>		
<review></review>			
top notch action thriller	<episode></episode>		
	<aka> Good Samaritan, The</aka>		
<review></review>			
Solid action and great suspense	<guest_director></guest_director>		
	Alexander, Jason		
<pre><td><pre>_ </pre></td></pre>	<pre>_ </pre>		
chox offices 182752865 c/box offices			
<pre></pre>	<pre>kepisode></pre>		
5110w	<aka> Gum, The </aka>		

Selectivity of XML Queries

How to concisely capture structural and value skew?
How to generate accurate estimates?

- McHugh & Widom, VLDB 1999: all subpaths of length up to k
 - For "longer" queries, combine info about subpaths
- Chen et al, ICDE 2001: capture correlation between paths
 - Use set hash signatures to represent paths
 - Compute selectivity by combining signatures
- Aboulnaga et al, VLDB 2001: compress path information
 - Focus: small summaries
 - Coalesce/delete elements with low frequency
- Polyzotis & Garofalakis, SIGMOD 2002: estimates for graph-structured data
- Wu et al, EDBT 2002: use histograms to capture ancestor/descendent relations

Related Work

	Summary	Stats	Supported Queries	Estimate computation
Chen et al ICDE 2001	Data	Paths + correlations	Tree pattern, no values	Specialized
Aboulnaga et al VLDB 2001	Data	Paths	Simple path, no values	Specialized
StatiX	Schema + Data	Schema types	Tree pattern, values	Classical histogram multiplication

Outline

- Motivation
- Related Work
- Overview
- Architecture
- Gathering statistics
- Transformations: flexible granularity
- Applying StatiX to XML storage
- Experiments
- Summary and Future Work

The StatiX Framework

- Schema-based stats
 - Use XML Schema to identify sources of skew
- Gather stats about types
 - Piggyback on validation
 - Concise summaries
 - Flexible granularity
- Histograms for summarizing information about distribution of values and structure
 - Well-studied and effective
 - Scalable: adjust to memory budgets
 - Symmetric mechanism for capturing structural and value skews
 - Easy to migrate functionality into relational backend
- Queries
 - Tree patterns, value-based selection and joins

Validation and Statistics Collection

- Validation
 - Check document against schema
 - Result: assignment of types to nodes
- Extend validation for statistics collection
- Count occurrences of types and their parents
 - Assign a unique id to each type
 - Keep one counter and a parent set per type
 - For each type instance
 - » Assign a global id: id.counter
 - » Add the id of the parent to the parent set

Gathering Statistics

Statix - SIGMOD, 2002

Summarization

Tuning Statistics: Schema Rewriting

- A given document can be validated by different XML Schemas
 - Different but equivalent regular expressions can be used to define an element
 - The presence or absence of a type name does not change the semantics of an XML Schema
- Control stat collection by:
 - Creating type names for potential sources of skew,
 I.e., Unions, repetitions, optional elements
 - Additional transformations (LegoDB, ICDE 2002)

Schema Transformations

type Show = show [
 title [String], year [Integer],
 review[String]*, Aka *,
 (box_office [Integer] |
 (season [Integer], Episode *))]

```
type Aka = aka [String]
```

type Episode = episode [Aka{0,2},
 guest_dir [String]?]

type St Distribution of reviews over shows title [Stright, year [Integer], Review*, Aka *, (Movie| TVShow)]

type Aka = aka [String]

type Episode = episode [Aka{0,2}, GuestDirector?]

type Review = review[String]

. . .

More Transformations...


```
type Aka = aka [String]
```

type Episode = episode [Aka{0,2}, GuestDirector?]

```
type Review = review[String]
```

type Show1 Distribution of reviews over shows that are movies title [Strino] ar [Integer], Review*, Aka *, Movie]

type Show2 Distribution of reviews over title [Stringshows that are ty shows Review*, Aka *, TVShow]

type Aka = aka [String]

type Episode = episode [Aka{0,2}, GuestDirector?]

type **Review** = review[String] Union Distribution

 $|summary| = \sum_i (ctypes_i * nbuckets_i * bsize_i) +$

 $\sum_{j}(btypes_{j} * nbuckets_{j} * bsize_{j})$

- Size is proportional to:
 - Number of incoming edges into types (ctypes)
 - Number of basic types (btypes)
 - Number of buckets
- 100MB XMark, 30 buckets/hist
 - 125 types: 25KB
 - 1887 types: 200KB (finest grain)
- Limit the number of types during transformation
- Limit the number of buckets

Applying StatiX

Statix - SIGMOD, 2002

Juliana Freire 19

- LegoDB (ICDE2002): cost-based XML-torelational mapping
- Given a schema, query workload, and data sample
 - Explore a set of alternative mappings
 - Select the mapping the leads to lowest cost
- Not practical to gather stats for each configuration
 - Need to derive precise stats for each configuration
- Use StatiX to generate fine-grained stats

Experiments

Statix - SIGMOD, 2002

Juliana Freire 21

Stat gathering overhead depends on number of types

- Overheads can be reduced
 - Tune code + Sampling
- One-time only procedure

- Queries involving value-based and structure-based joins (2-8 joins)
- Uniform distribution leads to large errors
- Chen et al using a summary twice as big lead to 53% error for X7

Statix - SIGMOD, 2002

Accuracy: IMDB

Summary and Future Work

- StatiX: leverage XML Schema data model, type transformations, and histograms to generate concise, flexible, and accurate summaries of XML documents
- Differentiators:
 - Handles larger class of queries
 - Localized impact of updates
 - Constructive approach
 - Easy to integrate into relational backend
- ♦ Future:
 - Support for recursion and aggregates
 - Ambiguity in validation (union distribution)