Today’s Agenda

- Need to cover *lots* of background material
 - Introduction to Statistical Models
 - Hidden Markov Models
 - Part of Speech Tagging
 - Applying HMMs to POS tagging
 - Expectation-Maximization (EM) Algorithm

- Now on to the Map Reduce stuff
 - Training HMMs using MapReduce
 - Supervised training of HMMs
 - Rough conceptual sketch of unsupervised training using EM
Introduction to statistical models

- Until the 1990s, text processing relied on *rule-based* systems

- Advantages
 - More predictable
 - Easy to understand
 - Easy to identify errors and fix them

- Disadvantages
 - Extremely labor-intensive to create
 - Not robust to out of domain input
 - No partial output or analysis when failure occurs
Introduction to statistical models

- A better strategy is to use data-driven methods
- Basic idea: learn from a large corpus of examples of what we wish to model (*Training Data*)

Advantages
- More robust to the complexities of real-world input
- Creating training data is usually cheaper than creating rules
- Even easier today thanks to Amazon Mechanical Turk
- Data may already exist for independent reasons

Disadvantages
- Systems often behave differently compared to expectations
- Hard to understand the reasons for errors or debug errors
Introduction to statistical models

- Learning from training data usually means estimating the parameters of the statistical model
- Estimation usually carried out via machine learning
- Two kinds of machine learning algorithms
 - Supervised learning
 - Training data consists of the inputs and respective outputs (labels)
 - Labels are usually created via expert annotation (expensive)
 - Difficult to annotate when predicting more complex outputs
 - Unsupervised learning
 - Training data just consists of inputs. No labels.
 - One example of such an algorithm: Expectation Maximization
Hidden Markov Models (HMMs)

A very useful and popular statistical model
Finite State Machines

- What do we need to specify an FSM formally?
 - Finite number of states
 - Transitions
 - Input alphabet
 - Start state
 - Final state(s)
Real World Knowledge

Weighted FSMs

What do we get out of it?

score('ab') = 2, score('bc') = 3
Real World Knowledge

Probabilistic FSMs

‘a’ is twice as likely to be seen in state 1 as ‘b’ or ‘c’
‘c’ is three times as likely to be seen in state 2 as ‘a’

What do we get out of it?

\[P('ab') = 0.50 \times 1.00 = 0.5, \quad P('bc') = 0.25 \times 0.75 = 0.1875 \]
Markov Chains

- This not a valid prob. FSM!
 - No start states
- Use prior probabilities
- Note that prob. of being in any state ONLY depends on previous state, i.e., the (1st order) Markov assumption

\[P(q_i | q_1, q_2, \ldots, q_{i-1}) = P(q_i | q_{i-1}) \]

- This extension of a prob. FSM is called a Markov Chain or an Observed Markov Model
Are states always observable?

Day: 1, 2, 3, 4, 5, 6

Bu, Be, S, Be, S, Bu

Bu: Bull Market
Be: Bear Market
S: Static Market

↑: Market is up
↓: Market is down
↔: Market hasn’t changed

Here’s what you actually observe:

Day: 1, 2, 3, 4, 5, 6

↑ ↓ ↔ ↑ ↓ ↔
Hidden Markov Models

- Markov chains are usually inadequate
- Need to model problems where observed events don’t correspond to states directly
- Instead observations = \(fp(\text{states}) \) for some p.d.f \(p \)
- Solution: A Hidden Markov Model (HMM)
 - Assume two probabilistic processes
 - Underlying process is hidden (states = hidden events)
 - Second process produces sequence of observed events
Formalizing HMMs

- An HMM $\lambda = (A, B, \Pi)$ is characterized by:
 - Set of N states $\{q_1, q_2, ..., q_N\}$
 - $N \times N$ Transition probability matrix $A = [a_{ij}]$
 \[a_{ij} = p(q_j | q_i), \quad \sum_i a_{ij} = 1 \quad \forall i \]
 - Sequence of observations $o_1, o_2, ... o_T$, each drawn from a given set of symbols (vocabulary V)
 - $N \times |V|$ Emission probability matrix, $B = [b_{it}]$
 \[b_{it} = b_i(o_t) = p(o_t | q_i) \]
 - $N \times 1$ Prior probabilities vector $\Pi = \{ \Pi_1, \Pi_2, ..., \Pi_N \}$
 \[\sum_{i=1}^{N} \pi_i = 1 \]
Things to know about HMMs

- The (first-order) Markov assumption holds
 \[P(q_i|q_1, q_2, \ldots, q_{i-1}) = P(q_i|q_{i-1}) \]

- The probability of an output symbol depends only on the state generating it
 \[P(o_t|q_1, q_2, \ldots, q_N, o_1, o_2, \ldots, o_T) = P(o_t|q_i) \]

- The number of states (N) does not have to equal the number of observations (T)
Stock Market HMM

\[P(\uparrow \mid \text{Bear}) = 0.1 \]
\[P(\downarrow \mid \text{Bear}) = 0.6 \]
\[P(\leftrightarrow \mid \text{Bear}) = 0.3 \]

\[P(\uparrow \mid \text{Bull}) = 0.7 \]
\[P(\downarrow \mid \text{Bull}) = 0.1 \]
\[P(\leftrightarrow \mid \text{Bull}) = 0.2 \]

\[P(\uparrow \mid \text{Static}) = 0.3 \]
\[P(\downarrow \mid \text{Static}) = 0.3 \]
\[P(\leftrightarrow \mid \text{Static}) = 0.4 \]

\[V = \{ \uparrow, \downarrow, \leftrightarrow \} \]
Applying HMMs

- 3 problems to solve before HMMs can be useful
 - Given an HMM $\lambda = (A, B, \pi)$, and a sequence of observed events O, find $P(O|\lambda)$ [Likelihood]
 - Given an HMM $\lambda = (A, B, \pi)$, and an observation sequence O, find the most likely (hidden) state sequence [Decoding]
 - Given a set of observation sequences and the set of states Q in λ, compute the parameters A and B. [Training]
Computing Likelihood

Assuming \(\lambda_{stock} \) models the stock market, how likely is it that on day 1, the market is up, on day 2, it’s down etc.? Are these Markov Chain?

\[t: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \]
\[\lambda_{stock}: \quad \uparrow \quad \downarrow \quad \leftrightarrow \quad \uparrow \quad \downarrow \quad \leftrightarrow \]

\[\prod_1 = 0.5 \quad \prod_2 = 0.2 \quad \prod_3 = 0.3 \]

\[\begin{align*}
P(\uparrow | Bear) &= 0.1 \\
P(\downarrow | Bear) &= 0.6 \\
P(\leftrightarrow | Bear) &= 0.3 \\
P(\uparrow | Bull) &= 0.7 \\
P(\downarrow | Bull) &= 0.1 \\
P(\leftrightarrow | Bull) &= 0.2 \\
P(\uparrow | Static) &= 0.3 \\
P(\downarrow | Static) &= 0.3 \\
P(\leftrightarrow | Static) &= 0.4 \\
\end{align*} \]
Computing Likelihood

- Sounds easy!
- Sum over all possible ways in which we could generate O from λ

$$P(O|\lambda) = \sum_Q P(O, Q|\lambda) = \sum_Q P(O|Q, \lambda) P(Q|\lambda)$$

$$= \sum_{q_1, q_2, \ldots, q_T} \pi_{q_1} b_{q_1}(o_1) a_{q_1 q_2} \ldots a_{q_{T-1} q_T} b_{q_T}(o_T)$$

Takes exponential (∞ NT) time to compute!
Right idea, wrong algorithm!
Computing Likelihood

- What are we doing wrong?
- State sequences may have a lot of overlap
- We are recomputing the shared bits every time
- Need to store intermediate computation results somehow so that they can be used
- Requires a Dynamic Programming algorithm
Forward Algorithm

- Use an N x T *trellis* or chart $[\alpha_t]$
- $\alpha_t(j) = \Pr(\text{being in state } j \text{ after seeing } t \text{ observations})$
 $= p(o_1, o_2, \ldots, o_t, q_t=j)$
- Each cell $= \sum$ extensions of all paths from other cells
 \[
 \alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t)
 \]
 - $\alpha_{t-1}(i)$: forward path probability until $(t-1)$
 - a_{ij}: transition probability of going from state i to j
 - $b_j(o_t)$: probability of emitting symbol o_t in state j

- $P(O|\lambda) = \sum_i \alpha_T(i)$
- Polynomial time ($\propto N^2T$)
Forward Algorithm

- Formal Definition

 - Initialization
 \[\alpha_1(j) = \pi_j b_j(o_1), 1 \leq j \leq N \]
 - Recursion
 \[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t); 1 \leq j \leq N, 2 \leq t \leq T \]
 - Termination
 \[P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i) \]
Forward Algorithm

Static

Bear

Bull

$O = \uparrow \downarrow \uparrow$

find $P(O|\lambda_{stock})$

\uparrow

$t=1$

\downarrow

$t=2$

\uparrow

$t=3$
Forward Algorithm (Initialization)

Static

Bear

Bull

\[\alpha_{1}(Bu) \times 0.7 = 0.14 \]

\[0.3 \times 0.3 = 0.09 \]

\[0.5 \times 0.1 = 0.05 \]
Forward Algorithm (Recursion)

- **Static**
 - $0.3 \times 0.3 = 0.09$
 - $0.5 \times 0.1 = 0.05$

- **Bear**
 - $\alpha_1(Bu) \times 0.2 \times 0.7 = 0.14$

- **Bull**
 - $0.09 \times 0.4 \times 0.1 = 0.0036$
 - $0.05 \times 0.5 \times 0.1 = 0.0025$

$$\sum \quad 0.0145$$

- $0.14 \times 0.6 \times 0.1 = 0.0084$

$t=1$

$t=2$

$t=3$

... and so on
Forward Algorithm (Recursion)

<table>
<thead>
<tr>
<th>State</th>
<th>t=1</th>
<th>t=2</th>
<th>t=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.3*0.3 = 0.09</td>
<td>0.0249</td>
<td>0.006477</td>
</tr>
<tr>
<td>Bear</td>
<td>0.5*0.1 = 0.05</td>
<td>0.0312</td>
<td>0.001475</td>
</tr>
<tr>
<td>Bull</td>
<td>α(Bu)0.2*0.7 = 0.14</td>
<td>0.0145</td>
<td>0.024</td>
</tr>
</tbody>
</table>

↑ t=1 ↓ t=2 ↑ t=3

states
Forward Algorithm (Recursion)

Static

Bear

Bull

\[\alpha_1(Bu) \times 0.2 \times 0.7 = 0.14 \]

\[0.3 \times 0.3 = 0.09 \]

\[0.5 \times 0.1 = 0.05 \]

\[0.3 \times 0.3 = 0.09 \]

\[0.5 \times 0.1 = 0.05 \]

\[0.3 \times 0.3 = 0.09 \]

\[0.5 \times 0.1 = 0.05 \]

\[0.0249 \]

\[0.0312 \]

\[0.0145 \]

\[0.0145 \]

\[0.024 \]

\[0.024 \]

\[\sum P(O) = 0.03195 \]
Decoding

Given λ stock as our model and O as our observations, what are the most likely states the market went through to produce O?
Decoding

- “Decoding” because states are hidden
- There’s a simple way to do it
 - For each possible hidden state sequence, compute P(O) using “forward algorithm”
 - Pick the one that gives the highest P(O)
- Will this give the right answer?
- Is it practical?
Viterbi Algorithm

- Another dynamic programming algorithm
- Same idea as the forward algorithm
 - Store intermediate computation results in a trellis
 - Build new cells from existing cells
- Efficient (polynomial vs. exponential)
Viterbi Algorithm

- Use an N x T trellis \([v_{tj}]\)
- \(v_{tj}\) or \(v_t(j) = P(\text{in state } j \text{ after seeing } t \text{ observations & passing through the most likely state sequence so far})\)
 \[= p(q_1, q_2, \ldots, q_{t-1}, q_t=j, o_1, o_2, \ldots, o_t)\]
- Each cell = extension of most likely path from other cells

\[
v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)
\]
- \(v_{t-1}(i)\): viterbi probability until time \((t-1)\)
- \(a_{ij}\): transition probability of going from state \(i\) to \(j\)
- \(b_j(o_t)\): probability of emitting symbol \(o_t\) in state \(j\)

- \(P = \max_i v_T(i)\)
Viterbi Algorithm

- Maximization instead of summation over previous paths
- This algorithm is still missing something!
- Unlike forward alg., we need something else in addition to the probability!
 - Need to keep track which previous cell we chose
 - At the end, follow the chain of backpointers and we have the most likely state sequence too!
 - $q_{T^*} = \text{argmax}_i \nu_T(i)$; $q_{t^*} = \text{the state } q_{t+1^*} \text{ points to}$
Viterbi Algorithm

- **Formal Definition**
 - **Initialization**
 \[v_1(i) = \pi_i b_i(o_1); 1 \leq i \leq N \]
 \[BT_1(i) = 0 \]
 - **Recursion**
 \[v_t(j) = \max_{i=1}^{N} [v_{t-1}(i)a_{ij}] b_j(o_t); 1 \leq i \leq N, 2 \leq t \leq T \]
 \[BT_t(j) = \arg\max_{i=1}^{N} [v_{t-1}(i)a_{ij}] \]
 - **Termination**
 \[P^* = \max_{i=1}^{N} v_T(i) \]
 \[q_T^* = \arg\max_{i=1}^{N} v_T(i) \]

Why no b()?
Viterbi Algorithm

Static

Bear

Bull

$O = \uparrow \downarrow \uparrow$

find most likely given state sequence
Viterbi Algorithm (Initialization)

- Static
 - $0.3 \times 0.3 = 0.09$

- Bear
 - $0.5 \times 0.1 = 0.05$

- Bull
 - $v1(Bu)0.2 \times 0.7 = 0.14$

States:

- $t=1$
- $t=2$
- $t=3$

Time:
Viterbi Algorithm (Recursion)

Static

Bear

Bull

\[v_1(Bu) \times a_{BuBu} \times b_{Bu}(\downarrow) \]
\[0.14 \times 0.6 \times 0.1 = 0.0084 \]

\[0.14 \times 0.6 \times 0.1 = 0.0084 \]

\[0.09 \times 0.4 \times 0.1 = 0.0036 \]

\[0.05 \times 0.5 \times 0.1 = 0.0025 \]

\[0.3 \times 0.3 = 0.09 \]

\[0.5 \times 0.1 = 0.05 \]

\[v_1(Bu) \times 0.2 \times 0.7 = 0.14 \]

\[0.05 \times 0.1 \times 0.1 = 0.0084 \]

\[0.0084 \]

\[\text{max} \]

\[t=1 \]

\[t=2 \]

\[t=3 \]

\[\uparrow \]

\[\downarrow \]
Viterbi Algorithm (Recursion)

Static

Bear

Bull

$0.3 \times 0.3 = 0.09$

$0.5 \times 0.1 = 0.05$

$v_1(Bu) = 0.2 \times 0.7 = 0.14$

0.0084

\ldots and so on

$t=1$

$t=2$

$t=3$

time
Viterbi Algorithm (Recursion)

```
Viterbi states

Static
- 0.3 * 0.3 = 0.09
- 0.1 * 0.5 = 0.05
- 0.3 * 0.3 = 0.09

Bear
- 0.5 * 0.1 = 0.05
- α1(Bu) * 0.2 * 0.7 = 0.14

Bull
- α1(Bu) * 0.2 * 0.7 = 0.14

↑
- t=1
↓
- t=2
↑
- t=3
```
Viterbi Algorithm (Termination)

Static

0.3 * 0.3 = 0.09

Bear

0.5 * 0.1 = 0.05

0.2 * 0.7 = 0.14

Bull

v(Bu) 0.2 * 0.7 = 0.14

0.3 * 0.3 = 0.09

0.5 * 0.1 = 0.05

0.2 * 0.7 = 0.14

0.0135

0.0168

0.0084

0.00135

0.00168

0.00084

0.00588

0.000504

0.00202

↑
t=1

t=2

t=3

↓

↑
Viterbi Algorithm (Termination)

Most likely state sequence
[Bull, Bear, Bull], P = 0.00588
Why are HMMs useful?

- Models of data that is ordered *sequentially*
 - Recall sequence of market up/down/static observations
- Other more useful sequences
 - Words in a sentence
 - Base pairs in a gene
 - Letters in a word
- Have been used for almost everything
 - Automatic speech recognition
 - Stock market forecasting (you thought I was joking?!)
Part of Speech Tagging
Part of Speech (POS) Tagging

- Parts of speech are well recognized linguistic entities
- *The Art of Grammar* circa 100 B.C.
 - Written to allow post-Classical Greek speakers to understand Odyssey and other classical poets
 - 8 classes of words
 - [Noun, Verb, Pronoun, Article, Adverb, Conjunction, Participle, Preposition]
 - Remarkably enduring list
- Occur in almost every language
- Defined primarily in terms of syntactic and morphological criteria (affixes)
Part of Speech (POS) Tagging

- Two broad categories of POS tags

- Closed Class:
 - Relatively fixed membership
 - Conjunctions, Prepositions, Auxiliaries, Determiners, Pronouns …
 - *Function* words: short and used primarily for structuring

- Open Class:
 - Nouns, Verbs, Adjectives, Adverbs
 - Frequent neologisms (borrowed/coined)
Part of Speech (POS) Tagging

- Several English tagsets have been developed
- Vary in number of tags
 - Brown Tagset (87)
 - Penn Treebank (45) [More common]
- Language specific
 - Simple morphology = more ambiguity = smaller tagset
- Size depends on language and purpose
Part of Speech (POS) Tagging

Process of assigning “one” POS or other lexical marker to each word in a corpus.
Why do POS tagging?

- Corpus-based Linguistic Analysis & Lexicography
- Information Retrieval & Question Answering
- Automatic Speech Synthesis
- Word Sense Disambiguation
- Shallow Syntactic Parsing
- Machine Translation
Why is POS tagging hard?

- Not really a lexical problem
- Sequence labeling problem
- Treating it as lexical problem runs us smack into the wall of ambiguity

I thought that you ...
That day was nice
You can go that far

(that: conjunction)
(that: determiner)
(that: adverb)
HMMs & POS Tagging
Modeling the problem

- What should the HMM look like?
 - States: Part-of-Speech Tags (t1, t2, … tN)
 - Output symbols: Words (w1, w2, …, wM)

- Can an HMM find the best tagging for a given sentence?
 - Yes! Viterbi Decoding (best = most likely)

- Once we have an HMM model, tagging lots of data is embarrassingly parallel: a tagger in each mapper

- The HMM machinery gives us (almost) everything we need to solve the problem
HMM Training

- Almost everything ?

- Before HMMs can decode, they must be trained, i.e., \((A, B, \pi)\) must be computed

- Recall the two types of training?
 - Supervised training: Use a large corpus of already tagged words as training data; count stuff; estimate model parameters
 - Unsupervised training: Use a corpus of untagged words; bootstrap parameter estimates; improve estimates iteratively
Supervised Training

- We have training data, i.e., thousands of sentences with their words already tagged
- Given this data, we already have the set of states and symbols
- Next, compute Maximum Likelihood Estimates (MLEs) for the various parameters
- Those estimates of the parameters that maximize the likelihood that the training data was actually generated by our model
Supervised Training

○ Transition Probabilities
 ● Any $P(t_i | t_i-1) = \frac{C(t_i-1t_i)}{\sum t'C(t_i-1t')}$ from the training data
 ● For $P(\text{NN}|\text{VB})$, count how many times a noun follows a verb and divide by the number of times anything else follows a verb

○ Emission Probabilities
 ● Any $P(w_i | t_i) = \frac{C(w_i, t_i)}{\sum w'C(w', t_i)}$ from the training data
 ● For $P(\text{bank}|\text{NN})$, count how many times the word bank was seen tagged as a noun and divide by the number of times anything was seen tagged as a noun

○ Priors
 ● The prior probability of any state (tag)
 ● For $\prod\text{noun}$, count the number of times a noun occurs and divide by the total number of words in the corpus
Supervised Training in MapReduce

- Recall that we computed relative frequencies of words in MapReduce using the Stripes design.
- Estimating HMM parameters via supervised training is identical.

\[f(B|A) = \frac{c(A, B)}{\sum_{B'} c(B')} \]

\[p(t_i|t_{i-1}) = \frac{c(t_{i-1}, t_i)}{\sum_{t'} c(t_{i-1}, t')} \]

\[p(w_i|t_i) = \frac{c(w_i, t_i)}{\sum_{w'} c(w', t_i)} \]

\[\pi_i = \frac{c(t_i)}{N} \]

Priors is like counting words.
Unsupervised Training

- No labeled/tagged training data
- No way to compute MLEs directly
- Make an initial guess for parameter values
- Use this guess to get a better estimate
- Iteratively improve the estimate until some convergence criterion is met

EXPECTATION MAXIMIZATION (EM)
Expectation Maximization

- A fundamental tool for unsupervised machine learning techniques

- Forms basis of state-of-the-art systems in MT, Parsing, WSD, Speech Recognition and more

- Seminal paper (with a very instructive title) Maximum Likelihood from Incomplete Data via the EM algorithm, JRSS, Dempster et al., 1977
Motivating Example

- Let observed events be the grades given out in, say, this class
- Assume grades are generated by a probabilistic model described by single parameter μ
- $P(A) = \frac{1}{2}$, $P(B) = \mu$, $P(C) = 2\mu$, $P(D) = \frac{1}{2} - 3\mu$
- Number of ‘A’s observed = ‘a’, ‘b’ number of ‘B’s etc.
- Compute MLE of μ given ‘a’, ‘b’, ‘c’ and ‘d’

Adapted from Andrew Moore’s Slides
http://www.autonlab.org/tutorials/gmm.html
Motivating Example

- Recall the definition of MLE
 “.... maximizes likelihood of data given the model.”

- \(P(\text{data}|\text{model}) = P(a,b,c,d|\mu) = K(1/2)a(\mu)b(2\mu)c(1/2-3\mu)d \) [independent and identically distributed]

- \(L = \log\text{-likelihood} = \log P(a,b,c,d|\mu) \)
 \[= a \log(1/2) + b \log \mu + c \log 2\mu + d \log(1/2-3\mu) \]

- How to maximize \(L \) w.r.t \(\mu \)? [Think Calculus]

- \(\frac{\delta L}{\delta \mu} = 0; \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0 \)

- \(\mu = \frac{b+c}{6(b+c+d)} \) [Note missing ‘a’]

- We got our answer without EM. Boring!
Motivating Example

- \(P(A) = 1/2, \ P(B) = \mu, \ P(C) = 2\mu, \ P(D) = 1/2 - 3\mu \)
- Number of ‘A’s and ‘B’s = h, c ‘C’s and d ‘D’s
- Part of the observable information is hidden
- Can we compute the MLE for \(\mu \) now?
- If we knew ‘b’ (and hence ‘a’), we could compute the MLE for \(\mu \). But we need to know \(\mu \) to know how the model generates ‘a’ and ‘b’.
- Circular enough for you?
The EM Algorithm

- Start with an initial guess for μ (μ_0)
- $t = 1$; Repeat
 - $b_t = \mu(t-1)h/(1/2 + \mu(t-1))$
 - [E-step: Compute expected value of b given μ]
 - $\mu_t = (bt + c)/6(bt + c + d)$
 - [M-step: Compute MLE of μ given b]
 - $t = t + 1$
- Until some convergence criterion is met
The EM Algorithm

- Algorithm to compute MLEs for model parameters when information is hidden
- Iterate between Expectation (E-step) and Maximization (M-step)
- Each iteration is guaranteed to increase the log-likelihood of the data (improve the estimate)
- Good news: It will always converge to a maximum
- Bad news: It will always converge to a maximum
Applying EM to HMMs

- Just the intuition; No gory details
- Hidden information (the state sequence)
- Model Parameters: A, B & \(\pi \)
- Introduce two new observation statistics:
 - Number of transitions from \(q_i \) to \(q_j \) (\(\xi \))
 - Number of times in state \(q_i \) (\(\gamma \))
- The EM algorithm should now apply perfectly
Applying EM to HMMs

- Start with initial guesses for A, B and Π
- t = 1; Repeat
 - E-step: Compute expected values of ξ, γ using At, Bt, Πt
 - M-step: Compute MLE of A, B and Π using ξt, γt
 - t = t + 1
- Until some specified convergence criterion is met
- Optional: Read Section 6.2 in Lin & Dyer for gory details
EM in MapReduce

- Each iteration of EM is one MapReduce job
- A driver program spawns MR jobs, keeps track of the number of iterations and convergence criteria
- Model parameters static for the duration of each job are loaded by each mapper from HDFS
- Mappers map over independent instances from training data to do computations from E-step
- Reducers sum together stuff from mappers to solve equations from M-step
- Combiners are important to sum together the training instances in memory and reduce disk I/O
Questions?