MapReduce and Data Analysis

Juliana Freire
New York University

Some slides from J. Lin, J. Simeon
Big Data Analysis

- Peta-scale datasets are everywhere:
 - Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
 - eBay has 6.5 PB of user data + 50 TB/day (5/2009)
 - ...

- A lot of these datasets have some structure
 - Query logs
 - Point-of-sale records
 - User data (e.g., demographics)
 - ...

- How do we perform data analysis at scale?
 - Relational databases and SQL
 - MapReduce (Hadoop)
Relational Databases vs. MapReduce

- **Relational databases:**
 - Multipurpose: analysis and transactions; batch and interactive
 - Data integrity via ACID transactions
 - Lots of tools in software ecosystem (for ingesting, reporting, etc.)
 - Supports SQL (and SQL integration, e.g., JDBC)
 - Automatic SQL query optimization

- **MapReduce (Hadoop):**
 - Designed for large clusters, fault tolerant
 - Data is accessed in “native format”
 - Supports many programming and query languages
 - Programmers retain control over performance
 - Open source

Source: O'Reilly Blog post by Joseph Hellerstein (11/19/2008)
Database Workloads

• OLTP (online transaction processing)
 • Typical applications: e-commerce, banking, airline reservations
 • User facing: real-time, low latency, highly-concurrent
 • Tasks: relatively small set of “standard” transactional queries
 • Data access pattern: random reads, updates, writes (involving relatively small amounts of data)

• OLAP (online analytical processing)
 • Typical applications: business intelligence, data mining
 • Back-end processing: batch workloads, less concurrency
 • Tasks: complex analytical queries, often ad hoc
 • Data access pattern: table scans, large amounts of data involved per query
One Database or Two?

- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency

- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads
 - How do we connect the two?
OLTP/OLAP Architecture

OLTP

ETL
(Extract, Transform, and Load)

OLAP
OLTP/OLAP Integration

• OLTP database for user-facing transactions
 • Retain records of all activity
 • Periodic ETL (e.g., nightly)

• Extract-Transform-Load (ETL)
 • Extract records from source
 • Transform: clean data, check integrity, aggregate, etc.
 • Load into OLAP database

• OLAP database for data warehousing
 • Business intelligence: reporting, ad hoc queries, data mining, etc.
 • Feedback to improve OLTP services
Business Intelligence

• Premise: more data leads to better business decisions
 • Periodic reporting as well as ad hoc queries
 • Analysts, not programmers (importance of tools and dashboards)

• Examples:
 • Slicing-and-dicing activity by different dimensions to better understand the marketplace
 • Analyzing log data to improve OLTP experience
 • Analyzing log data to better optimize ad placement
 • Analyzing purchasing trends for better supply-chain management
 • Mining for correlations between otherwise unrelated activities
OLTP/OLAP Architecture: Hadoop?

OLTP

ETL (Extract, Transform, and Load)

OLAP

Hadoop here?

What about here?
Why does this make sense?
ETL Bottleneck

• Reporting is often a nightly task:
 • ETL is often slow: why?
 • What happens if processing 24 hours of data takes longer than 24 hours?

• Hadoop is perfect:
 • Most likely, you already have some data warehousing solution
 • Ingest is limited by speed of HDFS
 • Scales out with more nodes
 • Massively parallel
 • Ability to use any processing tool
 • Much cheaper than parallel databases
 • ETL is a batch process anyway!
MapReduce Algorithms for Processing Relational Data
Relational Algebra

- Primitives
 - Projection (π)
 - Selection (σ)
 - Cartesian product (\times)
 - Set union (\cup)
 - Set difference ($-$)
 - Rename (ρ)

- Other operations
 - Join (\Join)
 - Group by... aggregation
 - ...
Projection

\[\pi \]
Projection in MapReduce

• Easy
 • Map over tuples, emit new tuples with appropriate attributes
 • No reducers, unless for regrouping or resorting tuples
 • Alternatively: perform in reducer, after some other processing

• Basically limited by HDFS streaming speeds
 • Speed of encoding/decoding tuples becomes important
 • Semistructured data? No problem!
Selection

The diagram illustrates a selection process denoted by σ. The left side shows a series of rows labeled R_1 to R_5, each containing different colored shapes. The right side shows the result of the selection process, with rows R_1 and R_3 highlighted in blue and yellow, respectively.
Selection in MapReduce

- Easy
 - Map over tuples, emit only tuples that meet criteria
 - No reducers, unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing

- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Semistructured data? No problem!
Group by... Aggregation

- Example: What is the average time spent per URL?

- In SQL:
 - `SELECT url, AVG(time) FROM visits GROUP BY url`

- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - How can you make this more efficient?
Relational Joins
Types of Relationships

Many-to-Many
One-to-Many
One-to-One
Working Scenario

- Two tables:
 - User demographics (gender, age, income, etc.) → (k,r,R)
 - User page visits (URL, time spent, etc.) → (k,s,S)

- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic
 - …
Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
Reduce-Side Join

- Basic idea: group by join key
- Map over both sets of tuples
- Emit tuple as value with join key as the intermediate key
- Execution framework brings together tuples sharing the same key
- Perform actual join in reducer
- Similar to a “sort-merge join” in database terminology

- Two variants
 - 1-to-1 joins
 - 1-to-many and many-to-many joins
Reduce-Side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S
Reduce-Side Join: 1-to-1

- At most one tuple from R and one tuple from S share the same join key
- Reducer will receive keys in the following format
 - \(k_{23} \rightarrow [(r_{64}, R_{64}), (s_{84}, S_{84})] \)
 - \(k_{37} \rightarrow [(r_{68}, R_{68})] \)
 - \(k_{59} \rightarrow [(s_{97}, S_{97}), (r_{81}, R_{81})] \)
 - \(k_{61} \rightarrow [(s_{99}, S_{99})] \)

- If there are two values associated with a key, one must be from R and the other from S
- What should the reduced do for \(k_{37} \)?
Reduce-Side Join: 1-to-many

Map

<table>
<thead>
<tr>
<th>R₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₉</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td></td>
</tr>
<tr>
<td>S₂</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>S₉</td>
<td></td>
</tr>
</tbody>
</table>

Reduce

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td></td>
</tr>
<tr>
<td>S₂</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

R is the one side, S is the many
Reduce-Side Join: 1-to-many

Map

<table>
<thead>
<tr>
<th>R_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_9</th>
<th>keys</th>
<th>values</th>
<th>R_1</th>
</tr>
</thead>
</table>

Reduce

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>S_2</td>
</tr>
</tbody>
</table>

Buffer all values in memory, pick out the tuple from R, and then cross it with every tuple from S to perform the join.

What’s the problem?

R is the one side, S is the many.
Sorting: Use Values

- “Value-to-key conversion” design pattern: form composite intermediate key, (k, v₁)
- Let execution framework do the sorting

 Before
 \[k \rightarrow (v₁, r), (v₄, r), (v₈, r), (v₃, r)\ldots \]
 Values arrive in arbitrary order…

 After
 \[(k, v₁) \rightarrow (v₁, r) \quad \text{Values arrive in sorted order…} \]
 \[(k, v₃) \rightarrow (v₃, r) \quad \text{Process by preserving state across multiple keys} \]
 \[(k, v₄) \rightarrow (v₄, r) \quad \text{Remember to partition correctly!} \]
 \[(k, v₈) \rightarrow (v₈, r) \ldots \]

- Anything else we need to do?
Reduce-Side Join: V-to-K Conversion

In reducer...

```
<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td></td>
</tr>
</tbody>
</table>
```

- New key encountered: hold in memory
- Cross with records from other set

https://www.inkling.com/read/hadoop-definitive-guide-tom-white-3rd/chapter-8/example-8-9
Reduce-side Join: many-to-many

In reducer...

- **keys**
 - \(R_1 \)
 - \(R_5 \)
 - \(R_8 \)
 - \(S_2 \)
 - \(S_3 \)
 - \(S_9 \)

- **values**

- **Hold in memory**

- **Cross with records from other set**

R is the smaller dataset
Reduce-side Join: many-to-many

In reducer...

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td></td>
</tr>
<tr>
<td>R₅</td>
<td></td>
</tr>
<tr>
<td>R₈</td>
<td></td>
</tr>
<tr>
<td>S₂</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>S₉</td>
<td></td>
</tr>
</tbody>
</table>

Hold in memory

Cross with records from other set

What’s the problem?

R is the smaller dataset
Reduce-Side Join

- What are the limitations?
Reduce-Side Join

- What are the limitations?
 - Both datasets are transferred over the network
Map-Side Join: Basic Idea

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a “merge join” in database terminology)
Map-Side Join: Parallel Scans

• If datasets are sorted by join key, join can be accomplished by a scan over both datasets

• How can we accomplish this in parallel?
 • Partition and sort both datasets in the same manner

• In MapReduce:
 • Map over one dataset, read from other corresponding partition
 • No reducers necessary (unless to repartition or resort)

• Consistently partitioned datasets: realistic to expect?
 • Depends on the workflow
 • For ad hoc data analysis, reduce-side are more general, although less efficient
In-Memory Join

- Basic idea: load one dataset into memory, stream over other dataset
- Works if $R << S$ and R fits into memory
- Called a “hash join” in database terminology
- MapReduce implementation
 - Distribute R to all nodes
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples
In-Memory Join: Variants

- Striped variant:
 - R too big to fit into memory?
 - Divide R into R₁, R₂, R₃, … s.t. each Rₙ fits into memory
 - Perform in-memory join: ∀ₙ, Rₙ ⋈ S
 - Take the union of all join results
Which join to use?

- In-memory join > map-side join > reduce-side join
- Why?
- Limitations of each?
 - In-memory join: memory
 - Map-side join: sort order and partitioning
 - Reduce-side join: general purpose
Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization
Questions?