Association Rules

Juliana Freire

Modified from Jeff Ullman, Jure Lescovec and Bing Liu
Association Rules: Some History

• Bar code technology allowed retailers to collect massive volumes of sales data

• Basket data: transaction date, set of items bought

• Leverage information for marketing
 • How to design coupons?
 • How to organize shelves?
Association Rules: Some History

• Data is very large and stored in tertiary storage

• Current (as of 1993) “database systems do not provide necessary functionality for a user interested in taking advantage of this information”

• Any feeling of déjà vu?
Association Rules: Some History

• The birth of data mining!

• Agrawal et al. (SIGMOD 1993) introduced the problem
 • Mining a large collection of basket data to discover association rules

• Many papers followed…
Association Rules: Impact

Scholar

About 1,700,000 results (0.06 sec)

Articles

- **Fast algorithms for mining association rules**
 R Agrawal, R Srikant - Proc. 20th Int. Conf. Very Large Data ..., 1994 - www-cgi.cs.cmu.edu
 This is a very long and complicated paper about taking a set of transactions (what the paper calls basket data) and finding association rules in them. For example, a marketing firm might want to ask “What percentage of people who bought X also bought Y?” Another question ...
 Cited by 13400 Related articles BL Direct All 312 versions Cite More

- **Mining association rules between sets of items in large databases**
 R Agrawal, T Imieliński, A Swami - ACM SIGMOD Record, 1993 - dl.acm.org
 Abstract We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates ...
 Cited by 11894 Related articles BL Direct All 99 versions Cite

- **Fast discovery of association rules**
 R Agrawal, H Mannila, R Srikant, H Toivonen - ... discovery and data ..., 1996 - cs.helsinki.fi
 Abstract Association rules are statements of the form “98% of customers that purchase tires and automobile accessories also get automotive services.” We consider the problem of discovering association rules between items in large databases. We present two new ...
 Cited by 2458 Related articles All 9 versions Cite

- **Mining quantitative association rules in large relational tables**
 R Srikant, R Agrawal - ACM SIGMOD Record, 1996 - dl.acm.org
 Abstract We introduce the problem of mining association rules in large relational tables.
Rakesh Agrawal
Technical Fellow, Microsoft Research
Data Mining - Web Search - Education - Privacy
Verified email at microsoft.com

Citation indices

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Since 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citations</td>
<td>67728</td>
<td>33861</td>
</tr>
<tr>
<td>h-index</td>
<td>81</td>
<td>57</td>
</tr>
<tr>
<td>i10-index</td>
<td>186</td>
<td>144</td>
</tr>
</tbody>
</table>

Citations to my articles

<table>
<thead>
<tr>
<th>Title / Author</th>
<th>Cited by</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast algorithms for mining association rules</td>
<td>13400</td>
<td>1994</td>
</tr>
<tr>
<td>R Agrawal, R Srikant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proc. 20th Int. Conf. Very Large Data Bases, VLDB 1215, 487-499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining association rules between sets of items in large databases</td>
<td>11894</td>
<td>1993</td>
</tr>
<tr>
<td>R Agrawal, T Imieliński, A Swami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM SIGMOD Record 22 (2), 207-216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mining sequential patterns</td>
<td>4244</td>
<td>1995</td>
</tr>
<tr>
<td>R Agrawal, R Srikant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast discovery of association rules</td>
<td>2458</td>
<td>1996</td>
</tr>
<tr>
<td>R Agrawal, H Mannila, R Srikant, H Toivonen, Al Verkamou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advances in knowledge discovery and data mining 12, 307-328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic subspace clustering of high dimensional data for data mining</td>
<td>2090</td>
<td>1998</td>
</tr>
<tr>
<td>applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Agrawal, J Gehrke, D Gunopulos, P Raghavan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM SIGMOD Record 27 (2), 94-105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supermarket shelf management:

• **Goal:** Identify items that are bought together by sufficiently many customers – the *frequent itemsets*
 - Items that co-occur more frequently than would be expected were the item bought independently
 - Bread + milk is not surprising…
 - Hot dogs + mustard is not surprising either, but supermarkets can do clever marketing: hot dogs on sale and increase the price of mustard

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Association Rule Discovery

Supermarket shelf management:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:**
 - If one buys diaper and milk, then she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket
 - \(l = \{i_1, i_2, \ldots, i_m\} \)

- A large set of *baskets/transactions*, e.g., the things one customer buys on one day
 - \(t \) a set of items, and \(t \subseteq l \).

- Transaction Database \(T \): a set of transactions \(T = \{t_1, t_2, \ldots, t_n\} \).

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>
Market-Baskets and Associations

• A many-many mapping (association) between two kinds of things.
 • Identify *connections among “items,”* not “baskets.”
 • E.g., 90% of transactions that purchase bread and butter also purchase milk

• The technology focuses on *common events,* not rare events (“long tail”)
Association Rules: Approach

- Given a set of baskets, discover association rules
 - People who bought \{a,b,c\} tend to buy \{d,e\}

- 2-step approach
 - Find frequent *itemsets*
 - Generate *association rules*

Supermarket shelf management
- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:** If one buys diaper and milk, then he is likely to buy beer
 - Don’t be surprised if you find six-pack next to diapers!

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:
- \{Milk\} \rightarrow \{Coke\}
- \{Diaper, Milk\} \rightarrow \{Beer\}
Applications – (1)

- **Items** = products; **baskets** = sets of products someone bought in one trip to the store.

- **Real market baskets:** Chain stores keep TBs of data about what customers buy together

- Tells how typical customers navigate stores, lets them position tempting items

- Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price of beer

- High **support** needed, or no $$’s

 - Only useful if many buy diapers & beer.

- **Amazon’s people who bought X also bought Y**
Applications – (2)

• **Baskets** = sentences; **items** = documents containing those sentences.
 - Items that appear together too often could represent plagiarism.
 - “I love NYC” – \{d1, d3, d5\}
 - “The subway is slow” – \{d1, d3\}
 - Notice items do not have to be “in” baskets.

• **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension:** Absence of an item needs to be observed as well as presence
Applications – (3)

- **Baskets** = Web pages; **items** = words.

- Unusual words appearing together in a large number of documents, e.g., “Brad” and “Angelina,” may indicate an interesting relationship.
Scale of the Problem

- WalMart sells 100,000 items and can store billions of baskets.
- The Web has billions of words and many billions of pages.
Outline

• Define:
 • Frequent itemsets
 • Association rules: confidence, support, interestingness

• Algorithms for finding frequent itemsets
Frequent Itemsets

- Simplest question: find sets of items that appear “frequently” in the baskets.

- **Support** for itemset \(I \) = the number of baskets containing all items in \(I \).
 - Often expressed as a fraction of the total number of baskets.

- Given a **support threshold** \(s \), sets of items that appear in at least \(s \) baskets are called **frequent itemsets**.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items**: \{milk, coke, pepsi, beer, juice\}.

- **Support = 3 baskets**.
 - $B_1 = \{m, c, b\}$
 - $B_2 = \{m, p, j\}$
 - $B_3 = \{m, b\}$
 - $B_4 = \{c, j\}$
 - $B_5 = \{m, p, b\}$
 - $B_6 = \{m, c, b, j\}$
 - $B_7 = \{c, b, j\}$
 - $B_8 = \{b, c\}$

- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\},
 \{m,b\}, \{b,c\}, \{c,j\}, \{m,p\}, \{j,p\}
Association Rules

• If-then rules about the contents of baskets.

• \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \).”

• Confidence of this association rule is the probability of \(j \) given \(i_1, \ldots, i_k \).

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Example: Confidence

\[B_1 = \{m, c, b\} \]
\[B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \]
\[B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \]
\[B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \]
\[B_8 = \{b, c\} \]

- An association rule: \{m, b\} \rightarrow c.
 - Confidence = \(\frac{2}{4} = 50\% \).

\[\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)} \]
Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule \(X \rightarrow \text{Milk} \) may have high confidence for many itemsets \(X \), because milk is purchased very often (independent of \(X \)) and the confidence will be very high

- **Interest** of an association rule \(I \rightarrow j \) is the difference between its confidence and the fraction of baskets that contain \(j \)

 \[
 \text{Interest} (I \rightarrow j) = \text{conf}(I \rightarrow j) - \Pr[j]
 \]

- Interesting rules are those with high positive or negative interest values

- For uninteresting rules, the fraction of baskets containing \(j \) will be the same as the fraction of the subset baskets including \(\{I,j\} \). So confidence will be high, but interest low
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

• An association rule: \(\{m, b\} \rightarrow c \).
 • Confidence = \(2/4 = 50\% \).
 • Interest = \(|0.5 - 5/8| = 1/8 \) --- not very interesting…
 • Item c appears in \(5/8 \) of the baskets

\[
\text{Interest (I} \rightarrow j\text{)} = \text{conf(I} \rightarrow j\text{)} - \text{Pr}[j]
\]
Example: Confidence and Interest

- \{\text{diapers}\} \rightarrow \text{beer}
 - The fraction of diaper-buyers that buy beer is significantly greater than the fraction of all customers that buy beer

 \begin{align*}
 \text{interest}(\{\text{diapers}\} \rightarrow \text{beer}) &= \left(\frac{\text{support}(\{\text{diapers, beer}\})}{\text{support}(\{\text{diapers}\})} \right) - \frac{\text{support}(\{\text{beer}\})}{\text{num_baskets}}
 \end{align*}

- \{\text{coke}\} \rightarrow \text{pepsi}
 - Negative interest – people who buy coke are unlikely to also buy pepsi

 \begin{align*}
 \text{interest}(\{\text{coke}\} \rightarrow \text{pepsi}) &= \left(\frac{\text{support}(\{\text{coke, pepsi}\})}{\text{support}(\{\text{coke}\})} \right) - \frac{\text{support}(\{\text{pepsi}\})}{\text{num_baskets}}
 \end{align*}
Finding Association Rules

- **Goal:** Find all rules that satisfy the user-specified *minimum support* (minsup) and *minimum confidence* (minconf).
 - \(\text{Support} \geq s \) and \(\text{confidence} \geq c \)

- **Key Features**
 - **Completeness:** find all rules.
 - **No target item(s) on the right-hand-side**
 - **Mining with data on hard disk** (not in memory)

- **Hard part: Finding the frequent itemsets**
 - If \(I \rightarrow j \) has high support and confidence, then both \(I \) and \(j \) will be frequent

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Mining Association Rules

- **Two steps:**
 1) Find all itemsets \(I \) that have minimum support (frequent itemsets, also called large itemsets).
 2) Rule generation: Use frequent itemsets to generate rules.
 - For every subset \(A \) of \(I \), generate rule \(A \rightarrow I-A \)
 - If \(I \) is frequent, then so is \(A \)
 - Perform a single pass to compute the rule confidence
 - \(\text{Conf}(A,B \rightarrow C,D) = \frac{\text{supp}(A,B,C,D)}{\text{supp}(A,B)} \)
 - If \(A,B,C \rightarrow D \) is below confidence, so is \(A,B \rightarrow C,D \)
 - Can generate bigger rules from smaller ones
 - Output rules above confidence threshold
Example

\[\text{conf}(I \rightarrow j) = \frac{\text{supp}(I, j)}{\text{supp}(I)} \]

1) Frequent itemsets

\{m\} – 5; \{c\} – 6; \{b\} – 6; \{n\} – 1; \{p\} – 2; \{j\} – 4
\{m, c\} – 3; \{m, b\} – 4; \{m, n\} – 1; \ldots; \{b, c\} – 5; \{c, j\} – 3; \{m, c, b\} – 3

2) Generate rules

\(m \rightarrow c: c = 3/5 \) \(b \rightarrow c: c = 5/6 \) \(b, c \rightarrow m: c = 3/5 \)
\(m \rightarrow b: c = 4/5 \) \(b, m \rightarrow c: c = 3/4 \)
\(b \rightarrow m: c = 4/6 \)

Min support \(s = 3 \), confidence = 0.75
Computing Itemsets

- **Back to finding frequent itemsets**
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are **small** but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.

Items are positive integers, and boundaries between baskets are -1.
Computing Itemsets

- Cost of mining is the \textit{number of disk I/Os}
- In practice, association-rule algorithms read data in passes
- We measure the cost by the \textit{number of passes} over the data
- Main memory bottleneck:
 - As we read the baskets, we need to count the pairs, triples, …
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster. Why?
Finding Frequent Pairs

• This is the hardest problem!
 • Often, frequent pairs are common, frequent triples are rare
 • The probability of being frequent drops exponentially with size; number of sets grows more slowly with size.

• We always need to generate all the itemsets

• But we would only like to count/keep track of those itemsets that in the end turn out to be frequent
Naïve Algorithm

• Read file once, counting in main memory the occurrences of each pair
 • From each basket of n items, generate its n(n-1)/2 pairs using two nested loops

• Problem: fails if n^2 exceeds main memory
 • 100K (Walmart); 10B (Web pages)
Example: Counting Pairs

- Suppose 10^5 items at Walmart
- Suppose counts are 4-byte integers.
- Number of pairs of items: $10^5(10^5-1)/2 = 5 \times 10^9$ (approximately).
- Therefore, 2×10^{10} (20 gigabytes) of main memory needed.
Details of Main-Memory Counting

- **Two approaches:**
 1. Count all pairs, using a triangular matrix.
 2. Keep a table of triples \([i, j, c]\) = “the count of the pair of items \([i, j]\) is \(c\).”

- (1) requires only 4 bytes/pair.
 - **Note:** always assume integers are 4 bytes.

- (2) requires 12 bytes, but only for those pairs with count > 0.
Comparing Approaches

Method (1) 4 per pair

Method (2) 12 per occurring pair
Triangular-Matrix Approach

- $n =$ total number or items
- Requires table of size $O(n)$ to convert item names to consecutive integers.
- Count $\{i, j\}$ only if $i < j$.
- Keep pairs in the order $\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots, \{3,n\}, \ldots \{n-1,n\}$.
- Pair $\{i,j\}$ is at position $(i-1)(n-i/2) + j - i$
- Total number of pairs $n(n-1)/2$; total bytes $2n^2$
<table>
<thead>
<tr>
<th></th>
<th>1,2</th>
<th>1,3</th>
<th>1,4</th>
<th>1,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pair \{i, j\} is at position \((i - 1)(n- i/2) + j - i\)
- \{1,2\} = 0 + 2 - 1 = 1
- \{1,3\} = 0 + 3 - 1 = 2
- \{1,4\} = 0 + 4 - 1 = 3
- \{1,5\} = 0 + 5 - 1 = 4
- \{2,3\} = (2-1)*(5-2/2) + 3 - 2 = 5
- \{2,4\} = (2-1)*(5-2/2) + 4 - 2 = 6
- \{2,5\} = (2-1)*(5-2/2) + 5 - 2 = 7
- \{3,4\} = (3-1)*(5-3/2) + 4 - 2 = 8
Details of Approach #2

- Total bytes used is about $12p$, where p is the number of pairs that actually occur.
 - $[i, j, \text{count}]$ – 3 integers are needed – 12 bytes
 - Save space by not storing triple for pairs with count=0
 - Beats triangular matrix if at most 1/3 of possible pairs actually occur

- May require extra space for retrieval structure, e.g., a hash table.
 - $h(i,j) \rightarrow \text{count}$
A-Priori Algorithm – (1)

- A two-pass approach called *a-priori* limits the need for main memory.

- Key idea: *monotonicity*: if a set of items appears at least s times, so does every subset.

- **Contrapositive for pairs**: if item i does not appear in s baskets, then no pair including i can appear in s baskets.
Compacting the Output

1. Maximal Frequent itemsets:
no immediate superset is frequent

<table>
<thead>
<tr>
<th>Count</th>
<th>Maximal</th>
<th>(S=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>B 5</td>
<td>No</td>
<td>(\rightarrow) BC is also frequent</td>
</tr>
<tr>
<td>C 3</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AB 4</td>
<td>Yes</td>
<td>(\rightarrow) Frequent and its only superset ABC is not frequent</td>
</tr>
<tr>
<td>AC 2</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>BC 3</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ABC 2</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
• **Pass 1**: Read baskets and count in main memory the occurrences of each item.
 • Requires only memory proportional to \(\# \) items \(n \).

• Items that appear at least \(s \) times are the **frequent items**.
 • Typical \(s = 1\% \) -- many singletons will be infrequent

• **Pass 2**: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 • Requires memory proportional to square of **frequent** items only (for counts) -- \(2m^2 \) instead of \(2n^2 \)
 • Plus a list of the frequent items (so you know what must be counted).
Main-Memory Picture of A-Priori

- **Pass 1**
 - Item counts

- **Pass 2**
 - Frequent items
 - Counts of pairs of frequent items
Detail for A-Priori

- You can use the triangular matrix method with \(m \) = number of frequent items.
 - May save space compared with storing triples.

- **Trick:** re-number frequent items 1,2,… and keep a table relating new numbers to original item numbers.

<table>
<thead>
<tr>
<th>Item counts</th>
<th>Frequent items</th>
<th>Old item #s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts of pairs of frequent items</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main memory

<table>
<thead>
<tr>
<th>Pass 1</th>
<th>Pass 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item counts</td>
<td>Frequent items</td>
</tr>
<tr>
<td>Counts of pairs of frequent items</td>
<td></td>
</tr>
</tbody>
</table>
For each k, we construct two sets of k–tuples (sets of size k):

- $C_k = \textit{candidate } k$ -sets = those that might be frequent sets (support $\geq s$) based on information from the pass for $k-1$.
- $L_k = \text{the set of truly frequent } k$ -sets.
Frequent Triples, Etc.

1. **All items** → **Filter** → **L₁** → **Construct** → **C₂** → **Filter** → **L₂** → **Construct** → **C₃**

 - **First pass** → **Frequent items**
 - **Second pass** → **Frequent pairs**
 - **To be explained**

 - **Count the items**
 - **Count the pairs**
 - **All pairs of items from L₁**

61
A-Priori for All Frequent Itemsets

- One pass for each k.
- Needs room in main memory to count each candidate k-set.
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory.
Example

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C_1
- Prune non-frequent: $L_1 = \{b, c, j, m\}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C_2
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C_3
- Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k–tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

Many possible extensions:
- Lower the support s as itemset gets bigger
- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods
Improvements to A-Priori

Modified Slides by Jeff Ullman
Association Rules: Not enough memory

• Counting for candidates C2 requires a lot of memory -- $O(n^2)$

• Can we do better?

• \textit{PCY}: In pass 1, there is a lot of memory left, leverage that to help with pass 2
 • Maintain a hash table with as many buckets as fit in memory
 • Keep count for each bucket into which pairs of items are hashed
 • Just the count, not the pairs!

• \textit{Multistage} improves PCY
PCY Algorithm – An Application of Hash-Filtering

for each basket:
 for each item in basket:
 add 1 to item’s count;
 for each pair of items:
 hash pair to a bucket
 add 1 to the count for that bucket

1. Pairs of items need to be generated from the input file; they are not present in the file.

2. We are not just interested in the presence of a pair, but we need to see whether it is present at least \(s \) \((\text{support})\) times.
PCY Algorithm – (2)

- A bucket contains a *frequent pair* if its count is at least the support threshold.
- If a bucket contains a frequent pair, the bucket is surely frequent
 - Even without any frequent pair, a bucket can be frequent.
 - We cannot use the hash to eliminate any member of this bucket
- If a bucket is not frequent, no pair that hashes to that bucket could possibly be a frequent pair.
 - Pairs that hash to this bucket can be eliminated as candidates
- On Pass 2, we only count pairs that hash to frequent buckets.
Main-Memory: PCY

Hash table
for pairs

Item counts

Frequent items

Bitmap

Counts of candidate pairs

Main memory

Pass 1

Pass 2
PCY Algorithm – Before Pass 1 Organize Main Memory

• Space to count each item.
 • One (typically) 4-byte integer per item.

• Use the rest of the space for as many integers, representing buckets, as we can.
PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket is frequent; 0 means it is not.

- 4-byte integers are replaced by bits, so the bit-vector requires 1/32 of memory.

- Also, decide which items are frequent and list them for the second pass.
PCY Algorithm – Pass 2

- Count all pairs \{i, j\} that meet the conditions for being a candidate pair:
 1. Both \(i\) and \(j\) are frequent items.
 2. The pair \(\{i, j\}\), hashes to a bucket number whose bit in the bit vector is 1.

- Both conditions are necessary for the pair to have a chance of being frequent.
Main-Memory: PCY

Pass 1

Item counts
Hash table for pairs

Pass 2

Frequent items
Bitmap
Counts of candidate pairs
Memory Details

• Buckets require a few bytes each.
 • **Note**: we don’t have to count past s.
 • # buckets is $O(\text{main-memory size})$.

• On second pass, a table of `(item, item, count)` triples is essential
 • Thus, hash table must eliminate 2/3 of the candidate pairs for PCY to beat a-priori.
Refinement: Multistage Algorithm

- Limit the number of candidates to be counted
 - Remember: memory is the bottleneck
 - Still need to generate all itemsets
 - Uses several successive hash tables—requires more than two passes

- **Key idea**: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY.
 - i and j are frequent, and
 - \{i,j\} hashes to a frequent bucket from Pass 1

- On middle pass, fewer pairs contribute to buckets, so fewer *false positives*—frequent buckets with no frequent pair.

- Requires 3 passes over the data
Multistage Picture

- **First hash table**
 - Item counts
 - Bitmap 1
 - Bitmap 2
 - Counts of candidate pairs

- **Second hash table**
 - Freq. items
 - Bitmap 1
 - Bitmap 2

- **Main memory**

Pass 1
- Count items
- Hash pairs \{i,j\}

Pass 2
- Hash pairs \{i,j\}
- \{i,j\} hashes to freq. bucket in B1

Pass 3
- Count pairs \{i,j\}
- \{i,j\} hashes to freq. bucket in B1
- \{i,j\} hashes to freq. bucket in B2
Multistage – Pass 3

- Count only those pairs \(\{i, j\} \) that satisfy these candidate pair conditions:
 1. Both \(i \) and \(j \) are frequent items.
 2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1.
 3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1.
Important Points

1. The two hash functions have to be independent.

2. We need to check both hashes on the third pass.
 • If not, we would wind up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket.
Multihash

• **Key idea**: use several independent hash tables on the first pass.

• **Risk**: halving the number of buckets doubles the average count. We have to be sure most buckets will still not reach count s.

• If so, we can get a benefit like multistage, but in only 2 passes.
Multihash Picture

Pass 1
- Item counts
- First hash table
- Second hash table

Pass 2
- Freq. items
- Bitmap 1
- Bitmap 2
- Counts of candidate pairs

Main memory
Extensions

- Either multistage or multihash can use more than two hash functions.

- In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.

- For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$.
All (Or Most) Frequent Itemsets In ≤ 2 Passes

• A-Priori, PCY, etc., take k passes to find frequent itemsets of size k.

• Other techniques use 2 or fewer passes for all sizes:
 • Random sampling.
 • SON (Savasere, Omiecinski, and Navathe).
 • Toivonen (see textbook)
Random Sampling – (1)

• Take a random sample of the market baskets.
• Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don’t pay for disk I/O each time you increase the size of itemsets.
 • Be sure you leave enough space for counts.
• Use as your support threshold a suitable, scaled-back number.
 • E.g., if your sample is 1/100 of the baskets, use $s / 100$ as your support threshold instead of s.

Copy of sample baskets

Space for counts
Random Sampling:— Option

• Optionally, verify that your guesses are truly frequent in the entire data set by a second pass (avoid false positives).

• But you don’t catch sets frequent in the whole but not in the sample (false negatives).
 • Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets.
 • But requires more space.
SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and perform the first pass of the simple algorithm on each subset.
 - This is not sampling but processing the entire file in memory-sized chunks

- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.
SON Algorithm – (2)

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
- **Key “monotonicity” idea:** an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
SON Algorithm – Distributed Version

- This idea lends itself to distributed data mining.
- If baskets are distributed among many nodes, compute frequent itemsets at each node, then distribute the candidates from each node.
- Finally, accumulate the counts of all candidates.
SON Mapreduce

- **Map 1:** support = s * p
 - Each mapper gets a fraction p of input
 - Output: (FrequentItemset, 1)

- **Reduce 1:** reducer is assigned a set of itemsets
 - Output: itemsets that appear 1 or more times

- **Map2:** candidates and portion of input file
 - Count occurrences of candidates in file
 - Output: (CandidateSet, support)

- **Reduce 2:** sum support values for CandidateSet
Summary - 1

- Market-basket model: useful for different applications – use your imagination!
 - Products and transactions: item placement, sales strategies, etc
 - Sentences and documents: plagiarism
 - Patients and drugs/side effects: drug combinations that result in particular side effects

- Finding frequent itemsets and association rules

- The bottleneck: counting pairs
 - Triangular matrices: save space by mapping a matrix into a 1-dimensional array
 - Triples: if fewer than 1/3 of pairs actually occur in baskets, triples are more efficient than triangular matrices
• Monotonicity of frequent itemsets \rightarrow allow for efficient algorithms
 • No need to count all itemsets!

• A-priory algorithm: find all pairs in 2 passes
 • Additional passes for bigger sets

• PCY algorithm: leverages spare main memory in first pass to reduce the number of pairs that need to be counted

• Multistage: multiple passes to hash pairs to different hash tables

• Multihash: use multiple hash tables in the first pass

• Randomized: user random samples instead of the full data set: may result in false positive and negatives

• SON algorithm: improvement over randomized – divide and conquer