EFFICIENT RENDERING OF
VOLUMETRIC IRREGULAR GRIDS DATA

A Dissertation Presented

by
Ricardo Farias
TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DocTOR OF PHILOSOPHY
IN

APPLIED MATHEMATICS AND STATISTICS

State University of New York at Stony Brook

June 2001

© Copyright 2001
by

Ricardo Farias

State University of New York at Stony Brook
The Graduate School

Ricardo Farias

We, the dissertation committee for the above candidate for the Doctor of

Philosophy degree, hereby recommend acceptance of this dissertation.

Joseph S. B. Mitchell, Dissertation Advisor
Professor, Applied Mathematics and Statistics

Claudio T. Silva, Dissertation Co-Advisor
Adjunct Assistant Professor, Applied Mathematics and Statistics

Esther M. Arkin, Committee Chair
Professor, Applied Mathematics and Statistics

Klaus Mueller
Assistant Professor, Computer Science

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

i

Abstract of the Dissertation
Efficient Rendering of Volumetric Irregular Grids Data
by
Ricardo Farias
Doctor of Philosophy
in
Applied Mathematics and Statistics
State University of New York at Stony Brook
2001

In this dissertation, we show the results of our research on the field of
volumetric rendering of unstructured grid data sets. We present and explain
in detail our most important results and contributions.

Volumetric rendering is a highly computational intense process. Images
generated by this process show informations about the interior of the data, not
only about the surface, by considering the data composed by semi-transparent
materials.

A technique to be used as a tool for real-time analysis, is required to
achieve a minimum rate of 10 frames per second (ideally 30 fps). Even the
fastest algorithm for volumetric rendering takes about 3.5 seconds to generate
an image of a data set composed by half million cells in a computer with a
fast processor, nowadays.

In the first part of our research, we optimized the fastest algorithm (at the
time), developed by Bunyk et al. [6], and put together some approximation
techniques to speed up the image generation. In a time-critical fashion, ap-

proximate images are delivered until the system is given more time, when it

il

generates more and more accurate images up to the exact one.

In the second part, we present a novel, simple, fast, memory efficient, exact
and robust volume rendering algorithm based on the sweep paradigm, called
ZSweep. This algorithm and the further work we developed on it, became
the most important contribution of our research. Extensions developed on this
algorithm are its adaptation to run on shared memory architectures, results
got on SGI machines, and time and memory requirements of an out-of-core
implementation. Also another simple out of core volume rendering algorithm

is proposed.

v

To my wife Vania, my son Renato, my daughter Leticia
and

My Parents Roberto Hudson and Myrian

Contents

1 Introduction

2 Review
2.1 Data Representation
2.2 Volume Rendering
2.2.1 Volume Rendering Pipeline: Geometric Stage
2.2.2 Volume Rendering Pipeline: Rasterization Stage
2.3 Parallel Rendering Basics
2.3.1 Parallel Architectures
2.3.2 Types of Parallelism
2.3.3 Parallel Programming Efficiency

3 Time-Critical Rendering
3.1 Introduction
3.2 The Rendering Algorithm
3.3 Time-Critical Algorithm
3.4 Experimental Results

3.5 Conclusion

vi

10
12
19
21
21
24
27

4 ZSweep Algorithm

4.1 Introduction Lo
4.2 The ZSweep Algorithm
4.3 Implementation Details
4.3.1 Preprocessing and Basic Structures
4.3.2 SWEED e e e
4.3.3 Projection oL
4.3.4 Delayed Compositing
4.3.5 Optimizations
4.4 Experimental Results0 0000
4.4.1 ZSweep Performance
4.4.2 Comparison with Other Methods
4.5 Conclusion

5 Parallelizing ZSweep

5.1 Imtroduction L Lo
5.2 Related Worko
5.3 The Parallel ZSWEEP Algorithm
5.4 Experimental Results
5.4.1 Sequential Tile-Based ZSWEEP
5.4.2 Load Balancing L.
5.4.3 Data and Image Scalability
5.5 Conclusiono L oo

6 I/0 Volume Rendering

6.1 Introduction

vii

61
62
67
73
74
74
7
7
78
81
82
85
86

93
94
98
101
104
105
106
109
110

113

6.2 Related Work oo 115
6.2.1 Unstructured Grid Volume Rendering 115
6.2.2 Out-Of-Core Scientific Visualization. 119

6.3 Out-Of-Core Rendering Algorithms for Unstructured Grids . . 120

6.3.1 Memory-Insensitive Rendering 120

6.3.2 Out-Of-Core ZSWEEP 123

6.4 Experimental Results 128

7 Conclusions 133

viii

List of Figures

w

© o0 N O Ot

11

12
13
14
15
16

Basic geometrical connectivities.o 7
Example of real 3D object. 9

Sequence of faces intersected by a ray cast through one pixel of

theimage. 11
The Volume Rendering Pipeline. 13
Viewing transformations. 14
Cross section for lighting model elaboration. 16
Clipping a set of triangles. 19
Parallel implementation considerations. 22
Distributed memory architecture representation. 25
Examples of five different data division schemes. 30
Spatial coherence in image space. 34
Ray cast optimization scheme. 39
Loss of boundary information. 53
Interior points simplification scheme. 54
Using ghost points to preserve boundary information. 55
Speeding up by scaling the resulting images. 56

X

17
18
19
20

21
22
23
24
25
26
27
28
29

30
31
32
33
34
35

36
37

Image down-sampling on the Blunt Fin.
Applying all simplification schemes.
Liquid Oxygen Post simplification.

A screen shot of the time-critical system GUL.

Faces projection scheme.
Breaking a rectangular face.
The sparse representation of a 2D mesh.
Image of Blunt Fin created in 5122512.
Image of Combustion Chamber created in 512x512.
Image of Liquid Oxygen Post created in 512x512.
Image of Delta Wing created in 512x512.
SPX dataset. Lo

Example of a hexahedral dataset.

ZSWEEP algorithm in action.
A 8-by-8 tiling decomposition is shown.
Sequential tile-based ZSWEEP results.
Running times on up to 12 processors for the Post dataset. . .
Load imbalance with different tiling parameters.

Rendering time plot.o oL

The main idea of the (in-core) ZSWEEP algorithm.
The rendering portion of out-of-core ZSWEEP.

60

70
76

List of Tables

1 Information about the data sets used in our experiments. . . . 46
2 Optimization time results. 47
3 Speed up from lazy transformations. 48
4 Down sampling time speed up. 49
) Dataset information.o oo 80
6 Speed ups obtained over sparse representation. 80
7 Render times on a SGI machine. 83
8 Render times on K7-PC machine. 83
9 Blunt fin render time and memory requirement. 84
10 Combustion chamber render time and memory requirement. . 84
11 Liquid oxigen post render time and memory requirement. . . . 84
12 Delta wing render time and memory requirement. 85
13 Rendering times for SPX.o 108
14 Main datasets used for benchmarking the parallel ZSweep. . . 109
15 Main datasets used for benchmarking the 10-ZSweep. 126

xi

16

17
18

Rendering times for the in-core ZSweep code running with one
gigabyte of RAM.o oL 128
Rendering times for the OOC-ZSweep using 128 MBytes of RAM.130

Rendering times for our memory insensitive rendering algorithm.131

xii

Acknowledgments

First T would like to express my deep gratitude to my advisor, Professor Joe
Mitchell and my Co-Advisor Claudio Silva, for their support, friendship, en-
couragement and guidance over the past five years.

I thank also the members of my committee, Professors Esther M. Arkin and
Klaus Mueller for their time and useful criticism. Many thanks to the AMS
Department staff, in particular, Scott Connelly, Claire Dugan, Nancy Policas-
tro, Loretta Budd, and Laura Colucci for their help and patience, making this
hard period of my life much easier.

Thanks to Brian Wylie, Dino Pavlakos and Pat Crossno from Sandia Na-
tional Labs, for their contributions to my work. To all of our Computational
Geometry group students, Jim Klosowski, Changkil Lee, Xinyu Xiang, Tsung-
Chin Ho, Nenad Jovanovic, Petr Konecny, Saurabh Setia and Pyiush Kumar
for helpful discussions, mutual help and friendship.

I would like to thank Paul Bunyk and Claudio Silva for making their codes
available. Also thanks to the the graphics community, who so often share
through the internet their hard-developed code. Thanks to Peter Williams
and Will Schroeder for providing some interesting datasets, NASA for making
available the Blunt Fin, Liquid Oxigen Post and Delta Wing datasets.

Thanks to many friends from Brazil who helped me not only with moti-
vation, but with their friendship during the dark period of adaptation and
qualifying exams: Professor Antonio Oliveira, Professor Alex Motta Borges;
my friends from LCG, Luiz Marcos Garcia Gon calves, Marcelo Eugénio Kall-
mann, José Luis de Souza Pio, Fernando Wagner da Silva, Antonio Lopes
Apolinério Junior, Antonio Alberto Silva Junior, Victor Toso, Gilson Antonio
Giraldi, José Augusto Pereira Brito and José Maria Ribeiro Neves. Thanks
also to Murilo and Clarice Camargo for the short but high quality time we
spent together.

I thank my family for supporting me during all these years. My nephews
Anderson and Heverson whose sporadic visits always comforted me a lot. Spe-
cial thanks go to my dad Roberto Hudson and my mom Myrian, who are
also my friends and have always supported my crazy dreams, and without
whom nothing would have been possible. Thanks to my sister Jane, brothers
Hudson and Edson who completed my life helping me to become who I am
today. Thanks go also to my inlaws Evando and Maria Madureira. Most of
all, I thank my wife Vania, for her friendship and support during my graduate
studies, in all aspects, my son Renato and daughter Leticia who have always
been the reason for my persistence and determination. I finally thank God for
putting so many wonderful people in my life.

Thank you all.

Funding for this research has come from a variety of sources. I received

direct (e.g., stipend) funding from CNPq — Brazil (Ph.D. fellowship), Sandia

National Labs and the Office of Applied Mathematics of the U.S. Department
of Energy, and the National Science Foundation. Money for equipment and
other purposes have been provided by grants and donations from the National
Science Foundation, the State University of New York at Stony Brook, Sandia
National Labs and Compagq.

Chapter 1

Introduction

Volume rendering is the sub-field of the visualization with the goal of generat-
ing 2D images from 3D volumetric data sets.

The importance of volume rendering comes from the fact that data gen-
erated from computer simulations in sciences such as fluid dynamics, finite
element analysis, aerodynamics, etc, and also data acquired from satellites
for weather forecast, terrain mapping, etc, result usually in large data files of
giga-bytes in size. While all five human senses are very limited, our vision
sense has the important characteristic of allowing us to capture information
at a rate on the order of 100 million bits per second, since such information is
presented to us in the appropriate format: images.

To be able to analyze such data sets, we need to “see” them, and the
images generated must be consistent with our common sense. For instance, if
the data represents clouds, then the more dense the cloud, the darker it should
be displayed on the screen. Also, the hotter a region in space is, the brighter

in red color it should be shown. This coherence between the data, the type

CHAPTER 1. INTRODUCTION 2

of experiment and the appearance of the image generated, makes it possible
for us to visually analyse this huge amount of data in a reasonable amount of
time.

Besides color coherence, just mentioned, another image characteristic cru-
cial for its correct analysis, is the definition. It will dictate how clearly details
of the data (either experiment or simulation) will be shown, making it easier
and faster to precisely analyze of the data. It is usual to use approximate
rendering algorithms to interactively find a position and angle of observation,
and then apply a precise and more expensive rendering algorithm to generate
the exact image. For example, iso-surface extraction can make use of graphics
hardware to deliver images at interactive frame rates. In areas like surgery, in
medicine, it is desirable that the image generated even during the fly through,
is as precise as possible, to avoid mistakes.

To achieve this goal, computer scientists are actively investigating new al-
gorithms and techniques to speed up the volume rendering process. As will
be explained in Chapter 2, data can be represented as regular or irregular
grids, while a more general representation would be unstructured, where no
connectivity is considered. In the last decade, fast and exact algorithms were
developed and optimized for regular grid data (which utilizes implicit grid in-
formation), achieving the desired real-time frame rate (about 30 frames per
second). It made this kind of representation very attractive for scientists in
various areas of research. But it was noticed that data density is not homoge-
neously distributed in space, and that a regular grid representation becomes
quickly prohibitive, as the amount of information grows, due to the high level

of redundancy.

CHAPTER 1. INTRODUCTION 3

A more compact and efficient representation for volumetric data is an ir-
regular grid. The grids can be refined in regions of high density of information
and sparse in low density regions. A drawback of such efficiency in space
representation is that more adjacency information must be taken into consid-
eration, making it much harder to perform rendering. This is the focus of our

research. In this dissertation we present our results in this field.

Dissertation OQutline

This dissertation is organized as follows:

In Chapter 2 we present a brief review of volume rendering and the most im-
portant efficiency issues related to the parallelization of rendering algorithms.

In Chapter 2.3.3 we describe the development of a tool for time critical
scientific visualization. We integrated a fast ray-tracing algorithm with some
approximation methods, in both image and object spaces, that allowed us to
trade accuracy for speed in the image generation process. Both the original
and the simplified meshes are kept in memory, and the system delivers ap-
proximated images, showing more accurate ones when more time is available.

In Chapter 4 we propose a novel volume rendering algorithm we call ZSweep.
The algorithm is based on the sweep paradigm; see [56]. By sweeping all points
in the data in increasing z direction the algorithm projects the faces of the
cells incident on the point. The intersections for each pixel are kept in an
ordered list that is used in a future step of compositing. The efficiency arises

from the fact that the algorithm exploits the implicit (approximate) global

CHAPTER 1. INTRODUCTION 4

ordering that the z-ordering of the vertices induces on the cells that are inci-
dent on them. Simplicity, speed, memory efficiency, and robustness were the
contributions of this algorithm is to the field of volume rendering.

In Chapter 5 we present the first parallelization results of the ZSweep al-
gorithm. Details about modifications necessary to avoid costly overheads and
to achieve a good load balancing are discussed. Also some cache coherence
analysis is given.

In Chapter 6 we propose two out-of-core volume rendering algorithms. The
first is a simple scheme of simple implementation that presents the desirable
characteristic of using a constant amount of memory, independent of the size
of the image required, we called memory insensitive rendering (MIR). The
second algorithm is more involved and is an extension of the ZSweep algo-
rithm, which brings down the memory requirement for the original algorithm
implementation.

Finally, Chapter 7 summarizes our work and gives some future directions.

Chapter 2

Review

In this chapter we review the basic concepts of volume rendering and issues
related to its parallelization. We start with a brief overview about data rep-

resentation.

2.1 Data Representation

Volume rendering is a subfield of visualization, which is an important field
of study in computer graphics. The goal of volume rendering is to create
(two-dimensional) images of (three-dimensional) volumetric data.

A volumetric dataset consists of information at sample locations in space.
The information may represent a scalar field, such as density in a computed
tomography (CT), or a vector field, such as velocity in a flow field, or even a
combination between these two, such as, energy, density, and momentum in a
computational fluid dynamics simulation.

Volumetric datasets are often represented in rectilinear grids, as a 3D grid

CHAPTER 2. REVIEW 6

of volume elements, called vozels. Each voxel is a unit of the volume and has
associated with it some property of the object or phenomenon being studied.
If all voxels are identical cubes the dataset is said to be reqular. Examples are
found in medical data, simulations of fluid dynamics experiments, and finite
element models. A variation on regular grids is curvilinear grids, which can be
thought of as the result of a “warping” of a regular grid. Unstructured grids
consist of arbitrarily shaped polyhedral cells, with no particular relation to
rectilinear grids. In this work, we focus on presenting efficient solutions for
visualizing volumetric datasets given as unstructured grids.

The most common techniques of volume rendering are ray-casting, splat-
ting, shear-warp and texture mapping based rendering. All of these techniques
can be applied to regular datasets, but only ray-casting and texture map-
ping (by means of 3D texture mapping), can be applied to unstructured grids
datasets.

Since we deal only with unstructured grids, we point to [50] as a reference
giving a survey and comparison among the techniques applied to regular grid
data.

We start by defining some important terms and concepts. We are given
a set V of n points in 3D space (R*). If no connection between the points
is given, such set is said to represent a point cloud. In unstructured grids,
connections are given between the points, which serve to organize the points

into a polyhedral decomposition of R? into vertices, edges, faces, and cells:

e Vertices are the input points V'; vertices are 0-dimensional.

e Edges are line segments connecting two vertices; edges are 1-dimensional.

CHAPTER 2. REVIEW 7

(a) (b) (c)

Figure 1: Basic geometrical connectivities. (a) Edges connect pairs of points.
(b) Points po, p1, p2 and ps are connected in a cycle that forms the boundary
of the face F'. To give a better 3D impression, we show the projection, P, of
F on the (z,y)-plane. Note that faces that are determined by more than 3
points may be non-planar. (c) A tetrahedral cell is defined by four triangular
faces.

See Figure 1.a.

e Faces are 2-dimensional polygons represented by a cycle of edges. See

Figure 1.b.

e Cells are 3-dimensional connected regions bounded by the faces. See

Figure 1.c.

Faces can be defined by three or more points. An important issue is that
when a face is determined by more then three points, it cannot be guaranteed
that the points are coplanar. This can lead to problems in the interpolation
step of the rendering procedure, as we discuss later.

We emphasize the distinction between a surface embedded in the 3D space,

bounding a 3D object, and an actual solid model of a 3D object. See Figure 2.

CHAPTER 2. REVIEW 8

3D objects are represented by (3-dimensional) cells, while a 2D surface is
represented only by a union of triangles or polygons, with no explicit data
representing the points in 3D that comprise the body of the object surrounded
by the surface. When generating an image using only the boundary faces, as
polygon rendering techniques do, no information about the interior is taken
into account.

If all cells of an unstructured grid are tetrahedral, we say that such a
dataset is represented by a tetrahedral grid. If the cells are given as hexahedra
(each having six faces), the dataset is said to be a hezahedral grid dataset. We
explicitly mention these two types of cells, since these are the most common
irregular grid representations found in the literature.

In Section 2.3.3 we describe the ray-casting algorithm, proposed by Bunyk
et al [6]; it uses cell connectivity to figure out the list of cells intersected by the
ray cast through each pixel of the image. In Section 4 we discuss the previous
works based on the sweep paradigm, including the ZSweep algorithm that we
propose in this thesis. In Section 5 and Section 6 we present the extensions
we have made to ZSweep, including the implementation and analysis of its
parallelization for shared-distributed memory architectures. We also describe
its adaptation to the out-of-core framework, in which the image is generated
in parts, and only the minimum data information necessary to generate each
part of the image is read in to memory at a time, allowing the visualization of

much larger datasets.

CHAPTER 2. REVIEW

<TST
v"‘%‘q
ST
LTINS
GRS T RN a
LA >

e
0%
KRN
(‘1‘ '
ALY
AN/
o

)

>

>

>

>

|

L7
7

<N
7!
Vf
>
B
£
5
<
<]

? X
2

X

ZAROK
AAAAK

AAAKRO

()

Figure 2: As an example of real 3D object we use the tetrahedral mesh for
the dataset SPX. (a) Frontal boundary faces. (b) All boundary faces. (c) The
entire mesh, where the edges of the interior faces are shown in green. Note
that the mesh shown in (b) is a 2D surface, while the mesh shown in (c) is a

real 3D mesh since information about its interior is considered by taking into
account interior faces.

CHAPTER 2. REVIEW 10

2.2 Volu e Ren erin

We now review some of the basic ideas and concepts of volume rendering.

The rendering process is a very computational intensive and complex pro-
cess. To control each step of the process, while making optimizations possible,
it is usual to break the whole process into a sequence of small steps. Such a
sequence is called the rendering pipeline and is discussed in the next section.
To make our discussion more general, we comment on the general rendering
pipeline, which applies to both polygon rendering and volume rendering.

In polygon rendering, each pixel is assigned the characteristics of the closest
intersection among all intersections between the ray cast through the pixel, and
all polygons in the scene. In contrast, in volume rendering, the final color of
a pixel comes from the sum of the contributions from each cell intersected by
the ray. Even though at first it may seem that in both cases we would have to
find all intersections between the ray for each pixel and all faces in the scene,
in polygon rendering one is often able to eliminate many of the faces before
starting the more expensive steps of the pipeline. For each step discussed
below, we note if it is applicable only to polygon rendering or also to volume
rendering.

Finally, we refer to Figure 3, where we show from two different points of
views the results of applying a ray tracing (Figure 3 (a)), where only informa-
tion from the boundary faces can be taken into account to generate the final
image, and of applying ray casting (Figure 3 (b)), where the ray penetrates
the volume, instead of stopping at its surface. In volume rendering the faces

are considered to be semi-transparent, allowing the ray of light to pass from

CHAPTER 2. REVIEW 11

IZAVAVAN

KIN

PAVAYA

AANNN]

Ly

N

\
VAVS

<
é
5

AVAY/

VAV,
\VAAN
ININ

N
>4
[X
/N
N

VAVAY
N/
VAVAV/
VAN

AN
N

AN

/]

N/

Figure 3: This is the data set SPX, seen from two different view points. (a)
Only surface information is shown for both viewing directions. (b) In addition
to the external edges, we show all faces intersected by the ray cast through
the pixel (160,230) when generating a 400-by-400 image.

CHAPTER 2. REVIEW 12

cell to cell. Ray casting determines for each pixel a list of intersections that
will be used to compute the lighting integral, resulting in the pixel s final color.

Each step of the Volume Rendering Pipeline groups a set of operations
necessary to perform a specific part of the whole process. The pipeline subdi-
vision depends on the particular implementation requirements. We will adopt
the following subdivision; see Figure 4. For convenience we split the pipeline
into two stages, the geometric stage and the rasterization stage.

Here we adopt the term model or o ect to indicate a connected portion of

the dataset; a single file may can contain many (disconnected) models.

Transformations and computations in the object space are performed at this

stage.

Modeling and Viewing Transformation

When first read into memory, an object resides in its on o ect space coordi-
nates. Each object has associated with it a sequence of transformations to
achieve the desired position and orientation relative to the world coordinate
system. The world space is unique, allowing all objects to be treated uniquely
throughout the pipeline.

To decrease the amount of work to be done, only the vis: le part of the data
has to be rendered. To determine the vertices and cells that must be taken into
account, a view transformation is performed. This transformation places the

camera (or observer) in the origin of the world, looking in a specific direction,

CHAPTER 2. REVIEW

[Input Data]

\4

PN
Model & View
Transformatio

——

\4

S E—

Back—face
Culling

v

Lighting

v

Screen

Projection
~— = @@

\4

S E—

Clipping

| S —

v

)
Scan

Conversion

@

\'4
[Display Imag%

(a)

Figure 4: The Volume Rendering Pipeline.

13

CHAPTER 2. REVIEW 14

(a) ()

Figure 5: On the left, the camera is positioned as the user specified. The
viewing transformation translates the view point to the origin, looking toward
the negative z-axis direction. It makes clipping and projection operations
simpler and faster. This procedure applies to both perspective and orthogonal
projections.

usually the negative z-axis. After applying these two transformations to all

data, the objects are now said to lie in the eye space. See Figure 5.

Back-Face Culling

This step, applicable only to polygon rendering, eliminates all faces whose
normals make angles smaller than 2 degrees with the viewing direction. In
the case of volume rendering, where the data is defined be interior faces as

well, back-face culling is not well defined, since the back of one cell is most

CHAPTER 2. REVIEW 15

likely the front of another cell. If the scene contains both types of models
(polygonal and volumetric), the application must be prepared to handle both
models, differently.

ighting

This is the step of the Volume Rendering pipeline in which the color for each
pixel of the image is computed. Various physical models can be used. The
more elaborate the model, the more realistic the images that are generated
and the more expensive and slower this step of the pipeline becomes.

Optical models used in volume rendering are based on physical models of
interaction between light and matter. The mathematical equation for this
purpose is known as the volume rendering integral (VRI) [4, 36, 47, 33]. The
model we analyze here is the one we have been using throughout our imple-
mentations, where the particles that comprise the matter of the object being
visualized are assumed to absorb and to emit light.

For the geometrical considerations used in obtaining the expression for the
optical model, we refer to Figure 6. In order to derive the VRI, we are going to
analyze the amount of light both absorbed and emitted by a cylindrical cross
section of the data with volume given by V , where is area of the
base of the cylinder and is its height. See Figure 6(a). For simplicity the
particles that comprise the object are considered to be identical spheres, with

2

radius , resulting in a projected area of on the frontal area of the

cross section; see Figure 6(b). Given as the particle density in the volume,
there are particles in the cross section. For small | the total

projected area can be approximated by 2 2 or 2 perunit

CHAPTER 2. REVIEW 16

δs

(a) ()

Figure 6: (a) In this cross section of an object, the small spheres represent the
particles that comprise the object. The arrow indicates the viewing direction.
(b) This is the frontal view of the cross section; the small circles are the
projections of the particles on the front face.

CHAPTER 2. REVIEW 17

area of the cross section. In the limit of 0, no overlap occurs and the

exact expression is given by the following differential equation:

—) T () T() (1)
Here the terms () and () are respectively the light intensities emitted

and absorbed by the differential cross section. It is usual to express ()

() =

— E() O1() (2)

() () () is called the emission term while () is called the a -
sorption coe cient in the second term on the right-hand side of Equation 2.
This equation can be solved by passing the second term on the right-
hand side to the left-hand side, multiplying the whole equation by the term
zp(o ()), and performing the integration with respect to , from 0 to z,

on both sides of the equation. The result is:

I I, T(2) . E(z)d (2)dz (3)

The term T(z) can be understood as the “transparency” of the object. The
transparency and the opacity, O(z), are related as follows: T(z) 1 O(z).
Considering the intensities as the intensities in terms of color, absorbed or

emitted by the particles in the object, we can rewrite equation 3 as

C(z) Gy () (1 O(2))dz, (4)

CHAPTER 2. REVIEW 18

and the opacity O(z) is obtained from

O(z) O o(z)dz (5)
0
This can be approximated as
1
O O 5 (o0 o) =z (6)

Finally, we obtain an analytical expression for the solution to Equation 4,

considered up to its second degree term:

c C 1(c c)O 1) =z %(300 5co co 3co) 7

(7)
Note that we changed the limits of integration from the range (0, z) to the
range (z ,z), in order to correspond to the integration from the current z to

the next z.

Pro ection

As we reach this point in the pipeline, all data is ready to be normalized to
fit on the screen. Remember that the data lies in the view space, usually the
unit-radius cube, with extreme pointsat (1, 1, 1)and (1,1,1). Depending
on the application s needs, one can decide to use either orthographic projection
(also called parallel projection) or perspective projection. Both transformations
can be represented by a 4r4 matrix and are well covered in the literature, so

we omit explicit review here.

Clipping

Only the primitives completely or partially inside the view volume need to be

passed to the next step of the rendering pipeline, which then draws them on

CHAPTER 2. REVIEW 19

<Y

b4/

pa
w o

Figure 7: Clipping a set of triangles.

the screen. Among such primitives, those that lie partially inside the viewing
volume require clipping; see Figure 7. Clipping is applicable in both polygon

and volume rendering algorithms.

After all transformations have been performed in the object space, we have the
data ready to generate the final 2D image to be displayed on the screen. This
process is the rasterization or scan conversion. A very simple way to think
about this step of the pipeline is to consider a triangular face of the data,
compute its bounding box, and make a double loop in and coordinates,
and for each pixel inside the bounding box, compute its z coordinate. If scalar

field values (which are given at the vertices of the input) is also to be taken

CHAPTER 2. REVIEW 20

into account, one can compute them by means of a bilinear interpolation of
the scalar values defined on each of the three vertices. We use this information
to compute the contribution for the three color components, r g , for each
pixel, and also the opacity. Modern video cards have support for triangular
face scan conversion, which accelerates this process.

The color computed for each pixel is in the format (, , ,), where the
stands for the opacity; these values are kept in a buffer called the color u er.
It is usual to use two buffers at the same time. All drawing is performed in
one buffer and it is only sent to the screen when all of the primitives have
been scan converted. At this time, we start drawing in the second buffer and
when it is completed, it is flushed, and so on. The double buffer technique
avoids undesired effects, such as flicking, while the program is drawing each
primitive.

There is another buffer called the Z- u er, which keeps for each pixel the
z coordinate of the face closest to the observer. By comparing the z value
for each new intersection for each pixel, it is possible to decide which value
must be kept. The Z- wu er resolves occlusion problems in hardware very
inexpensively. Note that the Z- wu eris applicable only to opaque objects in
the scene. In scientific visualization, where all data is assumed to be semi-
transparent, this use of the Z- u eris not applicable.

There is another buffer designed to handle transparency between two faces
— the stencil u er. To use this buffer for volume rendering, extra care must
be taken, since the faces must be sent to it in the correct depth order, which
requires an ordering on the cells (often obtained from a topological (partial)

ordering of the cells). Furthermore, if the faces in the data contain “cycles”

CHAPTER 2. REVIEW 21

in the visibility (partial) ordering, it is impossible to obtain a correct order,

unless some of the faces involved in the loop are cut, in order to break cycles.

2. arallel Ren erin asi s

For a more thorough discussion of parallel rendering background, we refer
the reader to [16]; the discussion we give in this section contains only the
minimum information necessary for the reader to grasp the basic ideas about
parallel processing applied to volume rendering.

An algorithm is said to be em arrassingly parallel if it can be easily paral-
lelized, with an implementation that performs little or no inter-process com-

munication, and a very small overhead is introduced due to parallel issues.

Parallel architectures is an extensive subject. Here we give just a brief idea
about the two most important classes of parallel architectures: shared memory
and distri uted memory architectures. For further background on this topic,
see [17].

For shared memory machines, all of the memory available in the machine
can be accessed by any one of the processors. When executing a parallel code,
the operating system creates the first thread, called the parent thread. The
parent thread is responsible for creating all of the glo al varia les, which will
be accessible by any process in the parallel part of the code. After reading all
necessary data and allocating memory space for all global variables, it reaches

the part of the code where the parallel commands will order the operating

CHAPTER 2. REVIEW 22

Physical Memory

Processor 0 R, - Private
——
Processor 1 P, ~ Private
Processor 2} s
/ Global Variables
L)
[)
L)
Processor _ly P, - Private
P1 - Private

(a)

Figure 8: Parallel implementation considerations. Each processor has its on
private set of variables, while all processors are able to access a common mem-
ory area for the global variables. Two implementation issues must be carefully
considered for the sake of efficiency: modifying global variables only when
necessary, and memory locality for cache coherence.

system to create the desired number of threads or processes. Note that the
number of threads has no connection to the number of processors in the ma-
chine. One can create, say, five threads in a one-processor machine, and the
processor time will be shared between the processes, managed by the operat-
ing system. If the number of threads one creates is less than or equal to the
number of processors in the machine, the operating system assigns one thread
for each available processor. See Figure 8.

When the operating system creates all threads, any variable created by
one thread can be accessed only by itself (private variables), but the global

variables can still be accessed by all threads. This means that global data can

CHAPTER 2. REVIEW 23

be manipulated by any of the processors in a transparent way, making the
access the same as usually experienced in a serial program.

Parallelizing a serial algorithm into this type of architecture is often straight-
forward, but, in order to achieve efficiency, care must be taken when it comes
to global variables access. All processes can read the value of the same vari-
able at the same time without problem. But if the access modifies the content
of a global variable, the processor must make sure that no other process will
try to modify this same variable at the same time by loc ing its global access
permission during the modification. On the other hand, the processor must
unloc the variable global access as soon as possible to avoid other processes
having to wait idle for the variable to have its access freed.

In this type of architecture, processors access RAM memory using the data

us. The memory access speed is a function of the data wus and-width. This
dependency imposes a limitation on the scalability of the shared memory ar-
chitecture, or the number of processors that can be added to the configuration.

Some smart schemes were introduced to speed up this architecture while
also allowing a greater number of processors to be used. One such scheme is
non-uniform memory access, where each processor has a local memory module;
accessing its own memory is faster than accessing other processors remote
memory. In this scheme the wus and-width is not as restrictive, as in the
previous scheme, allowing a much better scalability. But the cost for remote
memory access is higher, and the programmer is responsible for avoiding as
much as possible its occurrence.

The other important class of architecture is the distri uted memory ar-

chitecture. Here, each processor can be seen as a stand-alone computer and

CHAPTER 2. REVIEW 24

communication between two different PUs must be carried out by means
of networking communications. essage passing is the most common such
technique used. See Figure 9.
In this architecture, access to remote memory becomes very expensive and
a different approach for a parallel implementation must be considered. A more
elaborate scheme is required to avoid communication as much as possible. For
instance, in ray-casting algorithms if each process is assigned with the task
of computing the final color of a set of pixels of the image, only these
sets of (1, ,) values will have to be sent to the process responsible for
assembling the final image. On the other hand, this approach requires a lot
of information to be duplicated on each processor. Another possible scheme is
to divide the data among the processors, avoiding data duplication; however,
this will require each processor to send more information around, increasing
the communication cost.
The decision of which scheme to use is highly dependent upon the char-
acteristics of the algorithm chosen, the type of data to be handled, and the

specifications of the hardware available.

The types of parallelism one can apply in the volume rendering include func-
tional parallelism, data parallelism, and temporal parallelism. The method to
be used depends upon the application and the rendering algorithm to be de-
veloped. These methods can also be combined into a hybrid method, which

may be more efficient.

CHAPTER 2. REVIEW

Processor O

I/0

Y

F’0 - Private

Processor O

I/0

A

\

Fb - Private

Processor O

I/0

A

\i

FE) - Private

Processor O

1/0

A

Y

R- Private
m m
m
m
mm

A

X W O = A m Z2

25

m

m m

m m

Screen

O

RayCast

] Kept Cells
1 Deleted Cells

Rendering Time

120
110
100
90
80
70
60
50
40

Miss Rate

0.5
0.45 -
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Number of Tiles

Rendering Time (sec)

frodo 16x16 ——
smaug 16x16----
bilbo 16x16 -

Number of Processors

Load Inbalance

0.3

0.25

0.2

0.15

0.1

0.05

bilbo 8x8 —+—
bilbo 10x10 -
bilbo 12x12 -
bilbo 14x14

bilbo 16x16 -,
bilbo 18x18 #
bilbo 20x20/-

4 6
Number of Processors

Load Inbalance

0.25 T T T

0.2+
§ S 18 187
S L smaug 18x18--
g 015 smaug 20x20-
=} /
=
® o1t
o
—

0.05

0 .
12 0 2 4 6 8 10 12

Number of Processors

0.3 T T - - -
frodo 8x8 ——
frodo 10x10 -
0.25 frodo 12x12 -*-/ 1
frodo 14x14
02t frodo 16x16 ---#f-- |
: frodo 18x18 -~~~
frodo 20x20 - -
0.15
0.1r
0.05
0 s
0 2 4

Number of Processors

Rendering Time

800
700
600
500
400
300
200
100

SpX —+—

SPXL -
SPX2 rxer
SpX3 —-e

8 10 12 14
Number of Processes

16

